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Abstract. We consider the constraints of the Slavnov-Taylor identity of the IR behaviour of gluon and
ghost propagators and their compatibility with solutions of the ghost Dyson-Schwinger equation and with

the lattice picture.

PACS. 12.38.Aw General properties of QCD (dynamics, confinement, etc.) — 12.38.Gc Lattice QCD
calculations — 11.15.-q Gauge field theories — 11.15.Ha Lattice gauge theory

1 Introduction

In ref. [1] we have considered the constraints on the prop-
agator dressing functions which can be derived from the
Ward-Slavnov-Taylor identity (WSTI) —supplemented
with some minimal assumptions on the analytic behaviour
of the former and of the vertex form factors— and we were
confronted with a contradiction between them and the
ones that stem from the Dyson-Schwinger equation. The
analysis of the ghost propagator Dyson-Schwinger equa-
tion seems to indicate that only a non-divergent gluon
can match the lattice picture for the infrared behaviour of
Landau gauge Green functions. On the other hand, WSTI
seems to require that the gluon propagator diverges while
the ghost dressing function should be finite and non-vani-
shing. In that ref. [1] we proposed, as a possible way out,
that the ghost-gluon vertex function was singular (which
does not contradict Taylor’s theorem contrary to frequent
claims). That hypothesis did not look very natural and
the further work of [2] made it even less plausible.

In view of the very general validity of the WSTI, this
situation is rather embarrassing and we wish to reconsider
the problem. In the following, we will re-analyse the prob-
lem and clarify the working hypotheses to conclude either
that the gluon propagator diverges' or that some of these
hypoteses should fail.
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L Although softly enough as not to contradict the apparent
finiteness previously stated from lattice data.

2 Notations and main hypotheses

We use the following notations [1]:

(Gfﬁ)ab (k2) = 6 Gl(:f) <5W - k’;cf) , (1)

where G® and F® are, respectively, the gluon and
ghost propagators, G and F' are, respectively, the gluon
and ghost dressing functions. The ghost-gluon vertex

I'.(p,k;q) (k and —p are the momenta of the incoming
and outgoing ghosts and ¢ the gluon momentum) is de-
fined as follows:

5" (p, k3q) = go(=ipu) F** TP, 5 9)
= igof™" Tu(p. k;q).- (2)
It will be also useful to define the following scalars H; and
HQZ

Lu(=a,k;q — k) = quHi(q,k) + (q — k) H2(q, k) (3)
that, after applying the standard tensor decomposition [3],

Lu(p, k5 q) = dvua(p, k;9) — ¢ukub(p, k5 q)
+puquc(p, k; q) + @upud(p, k5 q) + puppe(p, k;q),  (4)
could be written as follows:
Hi(q,k) = a(—q, k;q — k) — ¢* (b(—q, k; ¢ — k)
+d(—q,k;q— k) + e(—q,k;q — k))
Ha(q,k) = ¢* (b(—q,k;q— k) —c(—q, ks — k). (5)
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We can at this point make our first hypothesis: the
scalar factors present in that decomposition are regular
when one of their arguments goes to zero while the others
are kept finite. Thus, we suppose that

a(-r,r —p;p) = a1 (p?) + O(p - 1), (6)

and the same for the other scalars in the particular kine-
matic configurations we shall encounter. We adopt the no-
tations a;(p?), bi(p?), ci(p?) and so on, where the subindex
1 means that their i-th argument is a zero momentum.

The most general tensorial decomposition of the three-
gluon vertex, I\, (of course, the antisymmetric color ten-
sor fe¢ is factorised) is given in ref. [4]. We will be inter-
ested in the limit of one vanishing gluon momentum while
the two others remain finite. Such a limit deserves a care-
ful analysis in the framework of WST identities because
of the interplay of gluon and ghost propagator singulari-
ties and those of scalar functions in the decomposition [5].
When one of the momenta is zero the three-gluon vertex
reduces to (cf. ref. [3]):

F)\,u,l/ (Q7 —q, 0) =
(26)\qu - 5)\1/qu - 6uuq/\) Tl (q2)
- (tm - q;%) 0 To(q”) + 0n0ua0 T3(q°)- (7)

For our purposes here, we will only assume that the limit
of one vanishing gluon momentum can be safely taken,
2
i.e”:
—¢,0)+o(1). (8

F)\ul/(q -7, —q, T) = F)\ul/((b

3 WSTI and IR propagators

The Ward-Slavnov-Taylor [6] identity for the three-gluon
function reads

P Dy (D, q,7) = %ﬁj;(fmr? — ) Dy (05 q)
—%(&M — axgu) D (a.pir). (9)

We shall now study the behaviour when r — 0 while keep-
ing ¢ and p finite and apply decompositions (2), (7) and
the hypotheses (6), (8) to replace the vertices in eq. (9).
Then, if one only retains the leading terms, STT reads

(@®) (quav — €*0uv) + @ 0uav T3(¢°) + 0(1) =

) [a1 (@*) (1"2(5,“, — rur,,)

NS

G(r?)
+b1(*)qu (FPaw — (g-7)r0) + 0o(r?)]
+ 2232; [a3(q2) (quI/ - q26uu) + 0(1)] . (10)

2 Tt is shown in [4], on a perturbative basis, that the vertex
remains finite when one takes the limit 7 — 0 while keeping the
two other momenta fixed. Our hypothesis amounts to assuming
that this result survives beyond perturbation theory.
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Thus, if one multiplies both 1.h.s. and r.h.s. of this eq. (10)
by r,, we obtain:

Tu(¢*) (qu (g-7) = ¢*ry)
+@%qu(q-7) Ts(q*) +o(r - q) =
F(q?)
G(¢%)
where the first term of the r.h.s. of eq. (10) vanishes be-

cause it is transverse to r,,. Thus, by identifying both r.h.s.
and Lh.s. of eq. (11), one is led to the familiar relations [3]:

as(q®) (au(qg-r) = ’ry) +o(r-q), (11)

(12)

Now, let us multiply both r.h.s. and Lh.s. of eq. (10) by ¢,
and apply that T3 has been seen to be exactly 0 in eq. (12)
and we obtain then

Fﬁ;”[wm%+fon

o (q,, (g -21“)

Thus, if a1 (¢?) # 0 or b1(¢*) # 0 (and, indeed, one knows
from perturbation theory that at large momenta a; = 1,
cf. [3,6]) eq. (9) implies

Q

n>+qn}:qn. (13)

2
lim G(r) —
7—0 r

00, (14)

or, in other words, that the gluon propagator diverges
in the infrared limit. If we stick to the commonly ac-
cepted idea that G behaves as a power in the infrared
(G(p*) ~ (p*)*¢), then ag < 1 is to be concluded. An-
other attractive possibility would be to suppose an in-
frared behaviour less divergent than any power as, for
instance, that of the form G(p?) ~ p®log”(p?) for some
positive v. This will be considered in more detail in a
forthcoming paper [5].

We can also, instead of letting » — 0, study now the
behaviour when p — 0 of eq. (9) as is done in [3]. The
dominant part of the L.h.s. of (9) reads

(20,0 - 4 — Puy — Pvay) as(q?) awmn

- (m - q;?") (p- )T2(a%),

(15)

where the results in eq. (12) have been implemented. Let
us now multiply both sides with ¢* and keep only the
leading tems in p and one obtains

(0 (- @) — ¢*pv)as(@®)F(¢°) =
(0 (- @) — o) F0*)(a2(q°) — ¢*da(q?))
+0(p*)
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that of course can be true only if F|(p?) goes to some finite
limit when p? — 0 and whence, in terms of scalars,

a2(q®) — ¢°da(q?)

F(q*) — F(0) ppe

q-—0

; (17)

where as/az — 1 as ¢> = 0 [3].

Let us repeat here that all these considerations are
valid only when our regularity hypotheses about the
ghost-gluon scalar factors and about the three-gluon ver-
tex (see (6), (8)) are satisfied. Under those hypotheses
one obtains important constraints on the gluon and ghost
propagators —namely that they are divergent in the zero-
momentum limit. Let us now briefly analyze the ghost
propagator Dyson-Schwinger equation (GPDSE).

4 Ghost DSE: the case af = 0

In a previous paper (ref. [1]) we studied all the classes of
solutions for the GPDSE, that can be pictured, in dia-
grammatic form, as:

—1

(F(¢*) ™ = (Fae(d) ™ -

- >
a,k

Let us first recall that the wunsubtracted GPDSE
is actually meaningless since the integral in its right-
hand side is UV-divergent, behaving as qu2q%(1 +

1a,/(2n) log(q/p))~3%/*4. A way out of this difficulty
would be to renormalise the equation to deal properly with
its UV divergencies. Instead of that, we preferred to study
the following subtracted version of the bare GPDSE equa-
tion for two scales, Ak and kAk (see eq. (14) of ref. [1])
with &k the external ghost momentum and x some fixed
number (< 1). A is an extra parameter that we shall ulti-
mately let go to 0 in order to study the infared behaviour
of the GPDSE. This subtracted version of the GPDSE

reads (see eq. (14) of ref. [1]):
1 1
F(\k) F(m\k)
¢*) ((k-q)° 2
o | 50 (5 )

o [ (¢ — /\k) YH1(q, \k) (18)

PESVE =] ).
where H; is the particular combination of the scalars de-
fined in eq. (2) playing the GPSDE game. Furthermore, a
proper dimensional analysis of eq. (18) requires to cut the
integration domain in its r.h.s. into two pieces by intro-
ducing some additional scale g5 (of the order of A3 p)-
Clearly, the external momentum is not the only relevant

The European Physical Journal A

Table 1. Constraints imposed by the GPDSE to the critical
behaviour of ghost and gluon propagators for the case ar #
0. The second column shows the behaviour on A (A — 0) of
eq. (18)’s r.h.s., while the Lh.s. behaves as (\?)™F

ar #0
afF + aa r.h.s. Constraint
>1 A2 ar = —1
=1 A?log A excluded
<1 (\)ertee | 2ap +ag =0

Table 2. The same constraints analysed in table 1 but here
for ar = 0. The Lh.s. of eq. (18) behaves now as the next-
to-leading term of the deep infrared expansion of F(g?) (third
column).

ar =0
afF + aa r.h.s. Constraint
>1 A2 F(¢*) = A+ B¢®
=1 | Mlog) | F(¢’) = A+ Bg’log¢*
<1 (\*)¢ | F(¢®) = A+ Bg*@

scale in the problem and Agcp, without which it would
not be understandable that the UV behaviour differs dras-
tically from the IR one, must be taken into account. A
careful dimensional analysis of the integrals extended over
both domains, ¢* > ¢2 and ¢ < ¢2, is mandatory [1]. In
the second one —and only there— we will initially use the
common, convenient, but not really justified assumption
of a power law behaviour of the propagators in the deep
infrared:

We shall not repeat here the details of our scaling analysis
of eq. (18)% and simply summarize our conclusions in the
following 2 tables. It is often claimed, after the study of
the GPDSE, that 2ar + ag = 0. In fact, as can be seen in
the next table 1, this results emerges only? after assuming
arp # 0 and discarding (reasonably) ap = —1.

However, if ap = 0 other solutions are also compatible
with GPDSE (see table 2).

Some recent lattice results seem to exclude the stan-
dard (2ag + ap = 0)-solution [1,2]. If one admits these
results (lattice also discards ap = —1), then one is led to
conclude that GPDSE implies ap = 0.

Furthermore, it was shown in ref. [7] that the r.h.s. of
eq. (18) is the sum of two terms behaving, respectively, as
A2Min(art+agtarl) and A2 when A — 0. So, it behaves as
A2 when ar = 0. Then, one can prove that for any & there

(19)

% The analysis done in [1] missed some possible solutions
(for instance, the case ar = 0, ag < 1) mainly because of
the fact that we had rejected the possibility of non-analytic
sub-dominant terms in the dressing functions.

4 The regularity of the ghost-gluon vertex is also needed as
was discussed in [1].
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Fig. 1. F(p) from a SU(2) simulations on a 48" lattice at
B = 2.3. (From ref. [7].)
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is a value of A and ¢ such that

1 1 1— k2"

FOR ek | ST X (20)

So FF = oo when A — 0 is excluded because tak-
ing the limit of the above expression when n — oo we
should have |ﬁ| < etz A% and F would diverge as

or more rapidly than % implying ar < —1 in contra-
diction with the hypothesis ap = 0. Let us remark that
F — 0is also ez)icluded: equation (20) implies |m| <
|ﬁ| + =522 and m cannot tend to infinity
when n — oo. It should be emphasized that the dimen-
sional analysis driving to eq. (20) is also valid if F(¢?) is
admitted to behave in a way other than a power. Thus, if a
leading power behaviour is discarded for the ghost dressing
function, it has to be finite and # 0 in the IR limit.

5 Conclusion

We derive from the Ward-Slavnov-Taylor identity for the
three-gluon and ghost-gluon vertices, after assuming their
regularity that gluon propagator diverges and ghost dress-
ing function remains finite as the momentum goes to zero.
A dimensional analysis of the GPDSE, provided that we
trust the lattice results excluding 2ar + ag = 0 [1,2] and
ap = —1, leads to conclude independently that the ghost
dressing function remains finite at zero momentum [7] (see
tables 1, 2). Both GPDSE and WSTI constraints will of-
fer compatible solutions provided that one admits non-
analytic sub-leading terms for the low momentum expan-
sion of dressing functions.

On the other hand, such a solution respecting WSTI
and GPDSE constraints still match in the present picture
of lattice knowledge about the IR behavior of propagators
and vertices. The current simulations of ghost-gluon
vertex seem to discard 2ar + ag = 0 but those of ghost
and gluon propagators cannot yet exclude or confirm
the smooth divergences we propose as a way out [2,8,9] (as

Constraints on the IR behaviour of gluon and ghost
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Fig. 2. F?G from lattice simulation for SU(2) (32* and
484,ﬁ5U(2) = 2.3) gauge groups. 2ar + ag = 0 implies a con-
stant in the infrared domain. (From ref. [1].)

an example, see figs. 1 and 2, from refs. [7] and [1], respec-
tively). A non-power behaviour (logarithmic, for instance)
could be specially elusive for lattice extrapolations at in-
finite volume. Of course, new simulation results on bigger
lattice volumes (or with twisted boundary conditions [10])
and careful extrapolations will be very welcome to dig into
this matter.

This is a very interesting task to be acomplished, be-
cause either such a logarithmic (or similar) behaviour is
found or one is led to conclude that the tensorial decom-
position of ghost-gluon or three-gluon vertex admits non-
regularities.
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